Difference between revisions of "Jacobi theta 4"

From specialfunctionswiki
Jump to: navigation, search
 
(2 intermediate revisions by the same user not shown)
Line 2: Line 2:
 
$$\vartheta_4(z,q)=1+2\displaystyle\sum_{k=1}^{\infty} (-1)^k q^{k^2} \cos(2kz),$$
 
$$\vartheta_4(z,q)=1+2\displaystyle\sum_{k=1}^{\infty} (-1)^k q^{k^2} \cos(2kz),$$
 
where $\cos$ denotes the [[cosine]] function.
 
where $\cos$ denotes the [[cosine]] function.
 +
 +
<div align="center">
 +
<gallery>
 +
File:Jacobitheta4,q=0.5plot.png|Graph of $\vartheta_4(z,\frac{1}{2})$.
 +
File:Complexjacobitheta4,q=0.5plot.png|Domain coloring of $\vartheta_4 \left(z,\frac{1}{2} \right)$.
 +
</gallery>
 +
</div>
  
 
=Properties=
 
=Properties=
Line 11: Line 18:
 
[[Derivative of Jacobi theta 1 at 0]]<br />
 
[[Derivative of Jacobi theta 1 at 0]]<br />
 
[[Logarithm of a quotient of Jacobi theta 4 equals a sum of sines]]<br />
 
[[Logarithm of a quotient of Jacobi theta 4 equals a sum of sines]]<br />
 
=See also=
 
[[Jacobi theta 1]]<br />
 
[[Jacobi theta 2]]<br />
 
[[Jacobi theta 3]]<br />
 
  
 
=References=
 
=References=
 
* {{BookReference|Special Functions|1960|Earl David Rainville|prev=Jacobi theta 3|next=findme}}: $164. (4)$
 
* {{BookReference|Special Functions|1960|Earl David Rainville|prev=Jacobi theta 3|next=findme}}: $164. (4)$
 
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Jacobi theta 3|next=Squares of theta relation for Jacobi theta 1 and Jacobi theta 4}}: $16.27.4$
 
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Jacobi theta 3|next=Squares of theta relation for Jacobi theta 1 and Jacobi theta 4}}: $16.27.4$
 +
 +
{{:Jacobi theta footer}}
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Latest revision as of 20:24, 25 June 2017

Let $q \in \mathbb{C}$ with $|q|<1$. The Jacobi $\vartheta_4$ function is defined by $$\vartheta_4(z,q)=1+2\displaystyle\sum_{k=1}^{\infty} (-1)^k q^{k^2} \cos(2kz),$$ where $\cos$ denotes the cosine function.

Properties

Squares of theta relation for Jacobi theta 1 and Jacobi theta 4
Squares of theta relation for Jacobi theta 2 and Jacobi theta 4
Squares of theta relation for Jacobi theta 3 and Jacobi theta 4
Squares of theta relation for Jacobi theta 4 and Jacobi theta 4
Sum of fourth powers of Jacobi theta 2 and Jacobi theta 4 equals fourth power of Jacobi theta 3
Derivative of Jacobi theta 1 at 0
Logarithm of a quotient of Jacobi theta 4 equals a sum of sines

References

Jacobi theta functions