Difference between revisions of "Van der Waerden function"
From specialfunctionswiki
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
− | + | The van der Waerden function $V \colon \mathbb{R} \rightarrow \mathbb{R}$ is defined by the formula | |
− | $$V(x)=\displaystyle\sum_{k=0}^{\infty} \dfrac{ | + | $$V(x)=\displaystyle\sum_{k=0}^{\infty} \dfrac{\mathrm{dist}_{\mathbb{Z}} \left(10^k x \right)}{10^k},$$ |
− | + | where $\mathrm{dist}_{\mathbb{Z}}$ denotes the [[distance to integers]] function. | |
− | |||
Line 19: | Line 18: | ||
=References= | =References= | ||
[https://pure.ltu.se/ws/files/30923977/LTU-EX-03320-SE.pdf] <br /> | [https://pure.ltu.se/ws/files/30923977/LTU-EX-03320-SE.pdf] <br /> | ||
+ | |||
+ | {{:Continuous nowhere differentiable functions footer}} | ||
[[Category:SpecialFunction]] | [[Category:SpecialFunction]] |
Latest revision as of 03:33, 6 July 2016
The van der Waerden function $V \colon \mathbb{R} \rightarrow \mathbb{R}$ is defined by the formula $$V(x)=\displaystyle\sum_{k=0}^{\infty} \dfrac{\mathrm{dist}_{\mathbb{Z}} \left(10^k x \right)}{10^k},$$ where $\mathrm{dist}_{\mathbb{Z}}$ denotes the distance to integers function.
Properties
van der Waerden function is continuous
van der Waerden function is nowhere differentiable