Difference between revisions of "Arcsinh"
From specialfunctionswiki
(→Properties) |
|||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
__NOTOC__ | __NOTOC__ | ||
The inverse hyperbolic sine function $\mathrm{arcsinh}$ is function is the [[inverse function]] of the [[sinh|hyperbolic sine]] function. It may be defined by | The inverse hyperbolic sine function $\mathrm{arcsinh}$ is function is the [[inverse function]] of the [[sinh|hyperbolic sine]] function. It may be defined by | ||
− | $$\mathrm{arcsinh}(z)=\log \left(z + \sqrt{1+z^2} \right) | + | $$\mathrm{arcsinh}(z)=\log \left(z + \sqrt{1+z^2} \right),$$ |
+ | where $\log$ denotes the [[logarithm]]. | ||
<div align="center"> | <div align="center"> | ||
Line 12: | Line 13: | ||
=Properties= | =Properties= | ||
[[Derivative of arcsinh]]<br /> | [[Derivative of arcsinh]]<br /> | ||
+ | [[Antiderivative of arcsinh]]<br /> | ||
=See Also= | =See Also= |
Latest revision as of 23:28, 11 December 2016
The inverse hyperbolic sine function $\mathrm{arcsinh}$ is function is the inverse function of the hyperbolic sine function. It may be defined by $$\mathrm{arcsinh}(z)=\log \left(z + \sqrt{1+z^2} \right),$$ where $\log$ denotes the logarithm.
Domain coloring of of $\mathrm{arcsinh}$.
Properties
Derivative of arcsinh
Antiderivative of arcsinh