Difference between revisions of "Arcsinh"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
 
Line 13: Line 13:
 
=Properties=
 
=Properties=
 
[[Derivative of arcsinh]]<br />
 
[[Derivative of arcsinh]]<br />
 +
[[Antiderivative of arcsinh]]<br />
  
 
=See Also=
 
=See Also=

Latest revision as of 23:28, 11 December 2016

The inverse hyperbolic sine function $\mathrm{arcsinh}$ is function is the inverse function of the hyperbolic sine function. It may be defined by $$\mathrm{arcsinh}(z)=\log \left(z + \sqrt{1+z^2} \right),$$ where $\log$ denotes the logarithm.

Properties

Derivative of arcsinh
Antiderivative of arcsinh

See Also

Arcsin
Sine
Sinh

References

Abramowitz&Stegun

Inverse hyperbolic trigonometric functions