Difference between revisions of "Relationship between dilogarithm and log(1-z)/z"

From specialfunctionswiki
Jump to: navigation, search
 
(2 intermediate revisions by the same user not shown)
Line 7: Line 7:
  
 
==References==
 
==References==
 +
* {{BookReference|Higher Transcendental Functions Volume I|1953|Arthur Erdélyi|author2=Wilhelm Magnus|author3=Fritz Oberhettinger|author4=Francesco G. Tricomi|prev=Dilogarithm|next=Li2(z)=zPhi(z,2,1)}}: $\S 1.11.1 (22)$
 
* {{BookReference|Dilogarithms and Associated Functions|1958|Leonard Lewin|prev=Taylor series of log(1-z)|next=findme}}: $(1.3)$
 
* {{BookReference|Dilogarithms and Associated Functions|1958|Leonard Lewin|prev=Taylor series of log(1-z)|next=findme}}: $(1.3)$
 
*{{BookReference|Polylogarithms and Associated Functions|1981|ed=2nd|edpage=Second Edition|Leonard Lewin|prev=Taylor series of log(1-z)|next=findme}}: $(1.3)$
 
*{{BookReference|Polylogarithms and Associated Functions|1981|ed=2nd|edpage=Second Edition|Leonard Lewin|prev=Taylor series of log(1-z)|next=findme}}: $(1.3)$

Latest revision as of 23:23, 3 March 2018

Theorem

The following formula holds: $$\mathrm{Li}_2(z)=-\displaystyle\int_0^z \dfrac{\log(1-z)}{z} \mathrm{d}z,$$ where $\mathrm{Li}_2$ denotes the dilogarithm and $\log$ denotes the logarithm.

Proof

References