Difference between revisions of "Li2(z)=zPhi(z,2,1)"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds: $$\mathrm{Li}_2(z)=z\Phi(z,2,1),$$ where $\mathrm{Li}_2$ denotes the dilogarithm and $\Phi$ denotes the Lerch transcendent. =...")
 
 
(3 intermediate revisions by the same user not shown)
Line 7: Line 7:
  
 
==References==
 
==References==
* {{BookReference|Higher Transcendental Functions Volume I|1953|Harry Bateman|prev=Relationship between dilogarithm and log(1-z)/z|next=}}: $\S 1.11.1 (22)$
+
* {{BookReference|Higher Transcendental Functions Volume I|1953|Arthur Erdélyi|author2=Wilhelm Magnus|author3=Fritz Oberhettinger|author4=Francesco G. Tricomi|prev=Relationship between dilogarithm and log(1-z)/z|next=Li 2(z)=-Li 2(1/z)-(1/2)(log z)^2 + i pi log(z) + pi^2/3}}: $\S 1.11.1 (22)$
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 23:23, 3 March 2018

Theorem

The following formula holds: $$\mathrm{Li}_2(z)=z\Phi(z,2,1),$$ where $\mathrm{Li}_2$ denotes the dilogarithm and $\Phi$ denotes the Lerch transcendent.

Proof

References