Difference between revisions of "Log 10(z)=log(z)/log(10)"
From specialfunctionswiki
(Created page with "==Theorem== The following formula holds: $$\log_{10}(z)=\dfrac{\log(z)}{\log(10)},$$ where $\log_{10}$ denote logarithm base a and $\log$ denotes logarithm. ==Proof==...") |
|||
Line 7: | Line 7: | ||
==References== | ==References== | ||
− | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Log e(z)=log(z)|next= | + | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Log e(z)=log(z)|next=log 10(z)=log 10(e)log(z)}}: $4.1.22$ |
[[Category:Theorem]] | [[Category:Theorem]] | ||
[[Category:Unproven]] | [[Category:Unproven]] |
Latest revision as of 19:27, 25 June 2017
Theorem
The following formula holds: $$\log_{10}(z)=\dfrac{\log(z)}{\log(10)},$$ where $\log_{10}$ denote logarithm base a and $\log$ denotes logarithm.
Proof
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): $4.1.22$