Difference between revisions of "Sum of cosh and sinh"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds: $$\cosh(z) + \sinh(z) = e^z,$$ where $\cosh$ denotes hyperbolic cosine, $\mathrm{sinh}$ denotes hyperbolic sine, and...")
 
 
Line 7: Line 7:
  
 
==References==
 
==References==
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Pythagorean identity for coth and csch|next=findme}}: $4.5.19$
+
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Pythagorean identity for coth and csch|next=Difference of cosh and sinh}}: $4.5.19$
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 22:30, 21 October 2017

Theorem

The following formula holds: $$\cosh(z) + \sinh(z) = e^z,$$ where $\cosh$ denotes hyperbolic cosine, $\mathrm{sinh}$ denotes hyperbolic sine, and $e^z$ denotes the exponential.

Proof

References