Difference between revisions of "Coth of a sum"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds: $$\coth(z_1+z_2)=\dfrac{\coth(z_1)\coth(z_2)+1}{\cosh(z_1)+\coth(z_2)},$$ where $\coth$ denotes hyperbolic cotangent. ==Proo...")
 
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
==Theorem==
 
==Theorem==
 
The following formula holds:
 
The following formula holds:
$$\coth(z_1+z_2)=\dfrac{\coth(z_1)\coth(z_2)+1}{\cosh(z_1)+\coth(z_2)},$$
+
$$\coth(z_1+z_2)=\dfrac{\coth(z_1)\coth(z_2)+1}{\coth(z_1)+\coth(z_2)},$$
 
where $\coth$ denotes [[coth|hyperbolic cotangent]].
 
where $\coth$ denotes [[coth|hyperbolic cotangent]].
  
Line 7: Line 7:
  
 
==References==
 
==References==
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Cosh of a sum|next=Tanh of a sum}}: $4.5.27$
+
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Tanh of a sum|next=Halving identity for sinh}}: $4.5.27$
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 01:48, 24 February 2018

Theorem

The following formula holds: $$\coth(z_1+z_2)=\dfrac{\coth(z_1)\coth(z_2)+1}{\coth(z_1)+\coth(z_2)},$$ where $\coth$ denotes hyperbolic cotangent.

Proof

References