Difference between revisions of "Integral representation of Struve function (3)"

From specialfunctionswiki
Jump to: navigation, search
 
Line 2: Line 2:
 
The following formula holds for $\mathrm{Re}(\nu)>-\dfrac{1}{2}$ and $|\mathrm{arg}(z)|< \dfrac{\pi}{2}$:
 
The following formula holds for $\mathrm{Re}(\nu)>-\dfrac{1}{2}$ and $|\mathrm{arg}(z)|< \dfrac{\pi}{2}$:
 
$$\mathbf{H}_{\nu}(z)=Y_{\nu}(z) + \dfrac{z^{\nu}}{2^{\nu-1}\sqrt{\pi}\Gamma(\nu+\frac{1}{2})} \displaystyle\int_0^{\infty} e^{-zt} (1+t^2)^{\nu-\frac{1}{2}} \mathrm{d}t,$$
 
$$\mathbf{H}_{\nu}(z)=Y_{\nu}(z) + \dfrac{z^{\nu}}{2^{\nu-1}\sqrt{\pi}\Gamma(\nu+\frac{1}{2})} \displaystyle\int_0^{\infty} e^{-zt} (1+t^2)^{\nu-\frac{1}{2}} \mathrm{d}t,$$
where $\mathbf{H}_{\nu}$ denotes the [[Struve function]], $Y_{\nu}$ denotes the [[Bessel Y|Bessel function of the second kind]], $\pi$ denotes [[pi]], $\Gamma$ denotes the [[gamma] function, and $e^{-zt}$ denotes the [[exponential]] function.
+
where $\mathbf{H}_{\nu}$ denotes the [[Struve function]], $Y_{\nu}$ denotes the [[Bessel Y|Bessel function of the second kind]], $\pi$ denotes [[pi]], $\Gamma$ denotes the [[gamma]] function, and $e^{-zt}$ denotes the [[exponential]] function.
  
 
==Proof==
 
==Proof==

Latest revision as of 19:53, 4 November 2017

Theorem

The following formula holds for $\mathrm{Re}(\nu)>-\dfrac{1}{2}$ and $|\mathrm{arg}(z)|< \dfrac{\pi}{2}$: $$\mathbf{H}_{\nu}(z)=Y_{\nu}(z) + \dfrac{z^{\nu}}{2^{\nu-1}\sqrt{\pi}\Gamma(\nu+\frac{1}{2})} \displaystyle\int_0^{\infty} e^{-zt} (1+t^2)^{\nu-\frac{1}{2}} \mathrm{d}t,$$ where $\mathbf{H}_{\nu}$ denotes the Struve function, $Y_{\nu}$ denotes the Bessel function of the second kind, $\pi$ denotes pi, $\Gamma$ denotes the gamma function, and $e^{-zt}$ denotes the exponential function.

Proof

References