Difference between revisions of "Prime counting"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The prime counting function $\pi \colon \mathbb{R} \rightarrow \mathbb{Z}^+$ is defined by the formula $$\pi(x) = \{\mathrm{number \hspace{2pt} of \hspace{2pt} primes} \leq x...")
 
 
(12 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
The prime counting function $\pi \colon \mathbb{R} \rightarrow \mathbb{Z}^+$ is defined by the formula
 
The prime counting function $\pi \colon \mathbb{R} \rightarrow \mathbb{Z}^+$ is defined by the formula
 
$$\pi(x) = \{\mathrm{number \hspace{2pt} of \hspace{2pt} primes} \leq x \}.$$
 
$$\pi(x) = \{\mathrm{number \hspace{2pt} of \hspace{2pt} primes} \leq x \}.$$
 +
 +
<div align="center">
 +
<gallery>
 +
File:Primecountingplot.png|Graph of $\pi(x)$.
 +
</gallery>
 +
</div>
 +
 +
=Properties=
 +
[[Prime number theorem, pi and x/log(x)]]<br />
 +
[[Prime number theorem, logarithmic integral]]<br />
 +
 +
=References=
 +
[http://people.mpim-bonn.mpg.de/zagier/files/doi/10.2307/2975232/fulltext.pdf Newman's short proof of the prime number theorem]
 +
 +
[[Category:SpecialFunction]]
 +
 +
{{:Number theory functions footer}}

Latest revision as of 06:35, 22 June 2016

The prime counting function $\pi \colon \mathbb{R} \rightarrow \mathbb{Z}^+$ is defined by the formula $$\pi(x) = \{\mathrm{number \hspace{2pt} of \hspace{2pt} primes} \leq x \}.$$

Properties

Prime number theorem, pi and x/log(x)
Prime number theorem, logarithmic integral

References

Newman's short proof of the prime number theorem

Number theory functions