Difference between revisions of "Dedekind eta"
From specialfunctionswiki
m (Tom moved page Dedekind eta function to Dedekind eta) |
|
(No difference)
|
Revision as of 07:08, 19 January 2015
Let $q=e^{2\pi i \tau}$. We define the Dedekind eta function by the formula $$\eta(\tau) = e^{\frac{\pi i \tau}{12}} \displaystyle\prod_{n=1}^{\infty} (1-q^n).$$
References
A collection of over 6200 identities for the Dedekind Eta Function