Difference between revisions of "Beta"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
(Properties)
Line 10: Line 10:
  
 
=Properties=
 
=Properties=
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
+
{{:Beta in terms of gamma}}
<strong>Theorem:</strong> The following formula holds:
 
$$B(x,y)=\dfrac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)},$$
 
where $\Gamma$ denotes the [[gamma function]].
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
  
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">

Revision as of 00:45, 21 March 2015

The $\beta$ function is defined by the formula $$B(x,y)=\displaystyle\int_0^1 t^{x-1}(1-t)^{y-1}dt.$$

Properties

Theorem

The following formula holds: $$B(x,y)=\dfrac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)},$$ where $B$ denotes the beta function and $\Gamma$ denotes the gamma function.

Proof

References

Theorem: The following formula holds: $$B(x,y)=2 \displaystyle\int_0^{\frac{\pi}{2}} (\sin t)^{2x-1}(\cos t)^{2y-1}dt,$$ where $\sin$ and $\cos$ denote the sine and cosine functions.

Proof:

Theorem: $B(x,y)=B(y,x)$

Proof:

Theorem: (i) $B(x+1,y)=\dfrac{x}{x+y} B(x,y)$
(ii) $B(x,y+1)=\dfrac{y}{x+y}B(x,y)$

Proof:

References

Bell. Special Functions
Special functions by Leon Hall