Difference between revisions of "Derivative of secant"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Proposition:</strong> $\dfrac{d}{dx}$$\csc$$(x)=-$$\cot$$(x)...")
 
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed">
+
==Theorem==
<strong>[[Derivative of cosecant|Proposition]]:</strong> $\dfrac{d}{dx}$[[Cosecant|$\csc$]]$(x)=-$[[Cotangent|$\cot$]]$(x)\csc(x)$
+
The following formula holds:
<div class="mw-collapsible-content">
+
$$\dfrac{\mathrm{d}}{\mathrm{d}z} \csc(z)=\cot(z),$$
<strong>Proof:</strong> █
+
where $\csc$ denotes the [[cosecant]] and $\cot$ denotes the [[cotangent]].
</div>
+
 
</div>
+
==Proof==
 +
 
 +
==References==
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Revision as of 07:45, 8 June 2016

Theorem

The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}z} \csc(z)=\cot(z),$$ where $\csc$ denotes the cosecant and $\cot$ denotes the cotangent.

Proof

References