Difference between revisions of "Beta in terms of sine and cosine"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> <strong>Theorem:</strong> The following formula holds: $$B(x,y)=...")
 
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
+
==Theorem==
<strong>[[Beta in terms of sine and cosine|Theorem]]:</strong> The following formula holds:  
+
The following formula holds:
 
$$B(x,y)=2 \displaystyle\int_0^{\frac{\pi}{2}} (\sin t)^{2x-1}(\cos t)^{2y-1}dt,$$
 
$$B(x,y)=2 \displaystyle\int_0^{\frac{\pi}{2}} (\sin t)^{2x-1}(\cos t)^{2y-1}dt,$$
 
where $B$ denotes the [[beta function]], $\sin$ denotes the [[sine]] function, and $\cos$ denotes the [[cosine]] function.  
 
where $B$ denotes the [[beta function]], $\sin$ denotes the [[sine]] function, and $\cos$ denotes the [[cosine]] function.  
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong> █
+
==Proof==
</div>
+
 
</div>
+
==References==

Revision as of 00:34, 4 June 2016

Theorem

The following formula holds: $$B(x,y)=2 \displaystyle\int_0^{\frac{\pi}{2}} (\sin t)^{2x-1}(\cos t)^{2y-1}dt,$$ where $B$ denotes the beta function, $\sin$ denotes the sine function, and $\cos$ denotes the cosine function.

Proof

References