Difference between revisions of "Q-cos sub q"

From specialfunctionswiki
Jump to: navigation, search
Line 8: Line 8:
 
=References=
 
=References=
 
[http://homepage.tudelft.nl/11r49/documents/as98.pdf]
 
[http://homepage.tudelft.nl/11r49/documents/as98.pdf]
 +
 +
[[Category:SpecialFunction]]

Revision as of 18:54, 24 May 2016

The function $\cos_q$ is defined by $$\cos_q(z)=\dfrac{e_q(iz)+e_q(-iz)}{2}=\displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^kz^{2k}}{(q;q)_{2k}},$$ where $e_q$ denotes the $q$-exponential $e$ and $(q;q)_{2k}$ denotes the $q$-Pochhammer symbol.

Properties

Theorem

The following formula holds: $$e_q(iz)=\cos_q(z)+i\sin_q(z),$$ where $e_q$ is the $q$-exponential $e_q$, $\cos_q$ is the $q$-$\cos$ function and $\sin_q$ is the $q$-$\sin$ function.

Proof

References

References

[1]