Difference between revisions of "Kelvin bei"

From specialfunctionswiki
Jump to: navigation, search
Line 8: Line 8:
 
</gallery>
 
</gallery>
 
</div>
 
</div>
 +
 +
<center>{{:Kelvin functions footer}}</center>

Revision as of 03:29, 21 August 2015

The $\mathrm{bei}_{\nu}$ function is defined as $$\mathrm{ber}(z)=\mathrm{Im} \hspace{2pt} J_{\nu} \left( x e^{\frac{3\pi i}{4}} \right),$$ where $\mathrm{Im}$ denotes the imaginary part of a complex number and $J_{\nu}$ denotes the Bessel function of the first kind.

<center>Kelvin functions
</center>