Difference between revisions of "Kelvin kei"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
The $\mathrm{bei}_{\nu}$ function is defined as
+
The $\mathrm{kei}_{\nu}$ function is defined as
$$\mathrm{ber}(z)=\mathrm{Im} \hspace{2pt} K_{\nu} \left( x e^{\frac{\pi i}{4}} \right),$$
+
$$\mathrm{kei}(z)=\mathrm{Im} \hspace{2pt} K_{\nu} \left( x e^{\frac{\pi i}{4}} \right),$$
 
where $\mathrm{Im}$ denotes the [[imaginary part]] of a [[complex number]] and $K_{\nu}$ denotes the [[Modified Bessel K sub nu|modified Bessel $K_{\nu}$]].
 
where $\mathrm{Im}$ denotes the [[imaginary part]] of a [[complex number]] and $K_{\nu}$ denotes the [[Modified Bessel K sub nu|modified Bessel $K_{\nu}$]].
  

Revision as of 03:19, 21 August 2015

The $\mathrm{kei}_{\nu}$ function is defined as $$\mathrm{kei}(z)=\mathrm{Im} \hspace{2pt} K_{\nu} \left( x e^{\frac{\pi i}{4}} \right),$$ where $\mathrm{Im}$ denotes the imaginary part of a complex number and $K_{\nu}$ denotes the modified Bessel $K_{\nu}$.