Difference between revisions of "Kelvin kei"
From specialfunctionswiki
Line 1: | Line 1: | ||
The $\mathrm{kei}_{\nu}$ function is defined as | The $\mathrm{kei}_{\nu}$ function is defined as | ||
− | $$\mathrm{kei}(z)=\mathrm{Im} \left[ e^{-\frac{\nu \pi i}{2} | + | $$\mathrm{kei}(z)=\mathrm{Im} \left[ e^{-\frac{\nu \pi i}{2}} K_{\nu} \left( z e^{\frac{\pi i}{4}} \right) \right],$$ |
where $\mathrm{Im}$ denotes the [[imaginary part]] of a [[complex number]] and $K_{\nu}$ denotes the [[Modified Bessel K sub nu|modified Bessel $K_{\nu}$]]. | where $\mathrm{Im}$ denotes the [[imaginary part]] of a [[complex number]] and $K_{\nu}$ denotes the [[Modified Bessel K sub nu|modified Bessel $K_{\nu}$]]. | ||
Revision as of 03:22, 21 August 2015
The $\mathrm{kei}_{\nu}$ function is defined as $$\mathrm{kei}(z)=\mathrm{Im} \left[ e^{-\frac{\nu \pi i}{2}} K_{\nu} \left( z e^{\frac{\pi i}{4}} \right) \right],$$ where $\mathrm{Im}$ denotes the imaginary part of a complex number and $K_{\nu}$ denotes the modified Bessel $K_{\nu}$.
Domain coloring of $\mathrm{kei}_0$.