Difference between revisions of "Kelvin bei"
From specialfunctionswiki
Line 10: | Line 10: | ||
<center>{{:Kelvin functions footer}}</center> | <center>{{:Kelvin functions footer}}</center> | ||
+ | |||
+ | [[Category:SpecialFunction]] |
Revision as of 18:37, 24 May 2016
The $\mathrm{bei}_{\nu}$ function is defined as $$\mathrm{bei}_{\nu}(z)=\mathrm{Im} \hspace{2pt} J_{\nu} \left( z e^{\frac{3\pi i}{4}} \right),$$ where $\mathrm{Im}$ denotes the imaginary part of a complex number and $J_{\nu}$ denotes the Bessel function of the first kind.
Domain coloring of $\mathrm{bei}_0$.