Difference between revisions of "Q-exponential E sub 1/q"
From specialfunctionswiki
(Created page with "The $E_{\frac{1}{q}}$ function is defined by the formula $$E_{\frac{1}{q}}(z) = \displaystyle\sum_{k=0}^{\infty} \dfrac{q^{ {k \choose 2} }}{[k]_q!} z^k.$$ =Properties= <div...") |
|||
Line 11: | Line 11: | ||
</div> | </div> | ||
</div> | </div> | ||
+ | |||
+ | [[Category:SpecialFunction]] |
Revision as of 18:55, 24 May 2016
The $E_{\frac{1}{q}}$ function is defined by the formula $$E_{\frac{1}{q}}(z) = \displaystyle\sum_{k=0}^{\infty} \dfrac{q^{ {k \choose 2} }}{[k]_q!} z^k.$$
Properties
Theorem: The following formula holds: $$D_q E_{\frac{1}{q}}(az)=aE_{\frac{1}{q}}(qaz),$$ where $D_q$ denotes the q-difference operator and $E_{\frac{1}{q}}$ denotes the $q$-exponential $E_{\frac{1}{q}}$.
Proof: █