Difference between revisions of "Van der Waerden function"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The van der Waerden function is defined by the formula $$V(x)=\displaystyle\sum_{k=0}^{\infty} \dfrac{1}{10^k} \underset{m\in\mathbb{Z}}{\inf} |10^k x-m|.$$ =Properties= <div...")
 
Line 16: Line 16:
 
</div>
 
</div>
 
</div>
 
</div>
 +
 +
=See Also=
 +
[[Takagi function]]
  
 
=References=
 
=References=
 
[https://pure.ltu.se/ws/files/30923977/LTU-EX-03320-SE.pdf] <br />
 
[https://pure.ltu.se/ws/files/30923977/LTU-EX-03320-SE.pdf] <br />

Revision as of 23:07, 31 December 2015

The van der Waerden function is defined by the formula $$V(x)=\displaystyle\sum_{k=0}^{\infty} \dfrac{1}{10^k} \underset{m\in\mathbb{Z}}{\inf} |10^k x-m|.$$

Properties

Theorem: The van der Waerden function is continuous.

Proof:

Theorem: The van der Waerden function is nowhere differentiable on $\mathbb{R}$.

Proof:

See Also

Takagi function

References

[1]