Difference between revisions of "Knopp function"
From specialfunctionswiki
Line 4: | Line 4: | ||
=Properties= | =Properties= | ||
− | + | [[Knopp function is continuous]]<br /> | |
− | |||
− | |||
− | |||
− | |||
− | </ | ||
<div class="toccolours mw-collapsible mw-collapsed"> | <div class="toccolours mw-collapsible mw-collapsed"> |
Revision as of 03:31, 27 October 2016
Let $a \in (0,1)$ $ab > 1$. Define the Knopp function $K \colon \mathbb{R} \rightarrow \mathbb{R}$ by $$K_{a,b}(x)=\displaystyle\sum_{k=0}^{\infty} a^k \mathrm{dist}_{\mathbb{Z}} \left( b^k x \right),$$ where $\mathrm{dist}_{\mathbb{Z}}$ denotes the distance to integers function.
Properties
Theorem: The Knopp function $K_{a,b}$ is nowhere differentiable on $\mathbb{R}$ for $a \in (0,1)$and $ab > 1$.
Proof: █
See Also
Takagi function
van der Waerden function