Difference between revisions of "Q-cos sub q"
From specialfunctionswiki
Line 1: | Line 1: | ||
+ | __NOTOC__ | ||
The function $\cos_q$ is defined by | The function $\cos_q$ is defined by | ||
$$\cos_q(z)=\dfrac{e_q(iz)+e_q(-iz)}{2}=\displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^kz^{2k}}{(q;q)_{2k}},$$ | $$\cos_q(z)=\dfrac{e_q(iz)+e_q(-iz)}{2}=\displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^kz^{2k}}{(q;q)_{2k}},$$ | ||
Line 4: | Line 5: | ||
=Properties= | =Properties= | ||
− | + | [[q-Euler formula for e sub q]]<br /> | |
=References= | =References= |
Revision as of 21:20, 4 July 2016
The function $\cos_q$ is defined by $$\cos_q(z)=\dfrac{e_q(iz)+e_q(-iz)}{2}=\displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^kz^{2k}}{(q;q)_{2k}},$$ where $e_q$ denotes the $q$-exponential $e$ and $(q;q)_{2k}$ denotes the $q$-Pochhammer symbol.