Difference between revisions of "Kelvin ber"
From specialfunctionswiki
Line 12: | Line 12: | ||
[http://mathworld.wolfram.com/Ber.html] <br /> | [http://mathworld.wolfram.com/Ber.html] <br /> | ||
− | + | [[Category:SpecialFunction]] | |
− | + | {{:Kelvin functions footer}} |
Revision as of 23:55, 10 June 2016
The $\mathrm{ber}_{\nu}$ function is defined as $$\mathrm{ber}_{\nu}(z)=\mathrm{Re} \hspace{2pt} J_{\nu} \left( z e^{\frac{3\pi i}{4}} \right),$$ where $\mathrm{Re}$ denotes the real part of a complex number and $J_{\nu}$ denotes the Bessel function of the first kind.
Domain coloring of $\mathrm{ber}_0$.