Difference between revisions of "Kelvin bei"

From specialfunctionswiki
Jump to: navigation, search
Line 7: Line 7:
 
File:Kelvinbei,n=0plot.png|Graph of $\mathrm{bei}_0$.
 
File:Kelvinbei,n=0plot.png|Graph of $\mathrm{bei}_0$.
 
File:Kelvinbei,n=1plot.png|Graph of $\mathrm{bei}_1$.
 
File:Kelvinbei,n=1plot.png|Graph of $\mathrm{bei}_1$.
File:Domcolkelvinbeisub0.png|[[Domain coloring]] of $\mathrm{bei}_0$.
+
File:Complexkelvinbei,n=0plot.png|[[Domain coloring]] of $\mathrm{bei}_0$.
 
</gallery>
 
</gallery>
 
</div>
 
</div>

Revision as of 00:51, 11 June 2016

The $\mathrm{bei}_{\nu}$ function is defined as $$\mathrm{bei}_{\nu}(z)=\mathrm{Im} \hspace{2pt} J_{\nu} \left( z e^{\frac{3\pi i}{4}} \right),$$ where $\mathrm{Im}$ denotes the imaginary part of a complex number and $J_{\nu}$ denotes the Bessel function of the first kind.

Kelvin functions