Difference between revisions of "Kelvin ber"
From specialfunctionswiki
Line 10: | Line 10: | ||
File:Kelvinber,n=2plot.png|Graph of $\mathrm{ber}_2$. | File:Kelvinber,n=2plot.png|Graph of $\mathrm{ber}_2$. | ||
File:Complexkelvinber,n=0plot.png|[[Domain coloring]] of $\mathrm{ber}_0$. | File:Complexkelvinber,n=0plot.png|[[Domain coloring]] of $\mathrm{ber}_0$. | ||
+ | File:Complexkelvinber,n=1plot.png|[[Domain coloring]] of $\mathrm{ber}_1$. | ||
</gallery> | </gallery> | ||
</div> | </div> |
Revision as of 00:38, 11 June 2016
The $\mathrm{ber}_{\nu}$ function is defined as $$\mathrm{ber}_{\nu}(z)=\mathrm{Re} \hspace{2pt} J_{\nu} \left( z e^{\frac{3\pi i}{4}} \right),$$ where $\mathrm{Re}$ denotes the real part of a complex number and $J_{\nu}$ denotes the Bessel function of the first kind.
Domain coloring of $\mathrm{ber}_0$.
Domain coloring of $\mathrm{ber}_1$.