Difference between revisions of "Polygamma"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
The polygamma function of order $m$, $\psi^{(m)}(z)$, is defined by the formula
+
The polygamma function of order $m$, $\psi^{(m)}(z) \colon \mathbb{C} \setminus \{0,-1,-2,\ldots\} \rightarrow \mathbb{C}$, is defined by the formula
 
$$\psi^{(m)}(z) = \dfrac{\mathrm{d}^{m+1}}{\mathrm{d}z^{m+1}} \log \Gamma(z),$$
 
$$\psi^{(m)}(z) = \dfrac{\mathrm{d}^{m+1}}{\mathrm{d}z^{m+1}} \log \Gamma(z),$$
 
where $\log \Gamma$ denotes the [[loggamma]] function. The [[digamma]] function $\psi$ is the function $\psi^{(0)}(z)$ and the [[trigamma]] function is $\psi^{(1)}(z)$.
 
where $\log \Gamma$ denotes the [[loggamma]] function. The [[digamma]] function $\psi$ is the function $\psi^{(0)}(z)$ and the [[trigamma]] function is $\psi^{(1)}(z)$.
Line 25: Line 25:
 
[[Digamma]]<br />
 
[[Digamma]]<br />
 
[[Trigamma]]<br />
 
[[Trigamma]]<br />
 +
 +
=References=
 +
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=findme|next=Integral representation of polygamma for Re(z) greater than 0}}: 6.4.1
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Revision as of 07:05, 11 June 2016

The polygamma function of order $m$, $\psi^{(m)}(z) \colon \mathbb{C} \setminus \{0,-1,-2,\ldots\} \rightarrow \mathbb{C}$, is defined by the formula $$\psi^{(m)}(z) = \dfrac{\mathrm{d}^{m+1}}{\mathrm{d}z^{m+1}} \log \Gamma(z),$$ where $\log \Gamma$ denotes the loggamma function. The digamma function $\psi$ is the function $\psi^{(0)}(z)$ and the trigamma function is $\psi^{(1)}(z)$.

Properties

Integral representation of polygamma
Integral representation of polygamma 2
Polygamma recurrence relation
Polygamma reflection relation
Polygamma series representation
Relation between polygamma and Hurwitz zeta

See Also

Digamma
Trigamma

References