Difference between revisions of "Polygamma reflection formula"

From specialfunctionswiki
Jump to: navigation, search
Line 7: Line 7:
  
 
==References==
 
==References==
 +
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Polygamma recurrence relation|next=Polygamma multiplication formula}}: 6.4.7
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Revision as of 19:52, 11 June 2016

Theorem

The following formula holds: $$(-1)^m \psi^{(m)}(1-z)-\psi^{(m)}(z)=\pi \dfrac{\mathrm{d}^m}{\mathrm{d}z^m} \cot(\pi z),$$ where $\psi^{(m)}$ denotes the polygamma, $\pi$ denotes pi, and $\cot$ denotes the cotangent.

Proof

References