Difference between revisions of "Secant zeta function"
From specialfunctionswiki
Line 3: | Line 3: | ||
=Properties= | =Properties= | ||
− | + | [[Absolute convergence of secant zeta function]] | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
<div class="toccolours mw-collapsible mw-collapsed"> | <div class="toccolours mw-collapsible mw-collapsed"> |
Revision as of 06:06, 16 June 2016
The secant zeta functions $\psi_s$ are defined by $$\psi_s(z) = \displaystyle\sum_{n=1}^{\infty} \dfrac{\sec(\pi n z)}{n^s}$$
Properties
Absolute convergence of secant zeta function
Theorem: Let $z$ be irrational, $k \geq \dfrac{1}{2}$, and $\dfrac{p}{q}$ be a rational approximation to $z$ in reduced form for which $$\left| z - \dfrac{p}{q} \right|< \dfrac{k}{q^2}.$$ Then either $\dfrac{p}{q}$ is a convergent $\dfrac{p_{\ell}}{q_{\ell}}$ to $z$, or $$\dfrac{p}{q} = \dfrac{ap_{\ell}+bp_{\ell-1}}{aq_{\ell}+bq_{\ell-1}}; |a|,|b|<2k,$$ where $a$ and $b$ are integers.
Proof: █