Difference between revisions of "Bateman F"
From specialfunctionswiki
Line 6: | Line 6: | ||
=References= | =References= | ||
− | * {{PaperReference|Some Properties of a certain Set of Polynomials|1933|Harry Bateman}} $3.$ | + | * {{PaperReference|Some Properties of a certain Set of Polynomials|1933|Harry Bateman|prev=findme|next=findme}} $3.$ |
* {{BookReference|Special Functions|1960|Earl David Rainville|prev=findme|next=Generating relation for Bateman F}}: $148. (1)$ | * {{BookReference|Special Functions|1960|Earl David Rainville|prev=findme|next=Generating relation for Bateman F}}: $148. (1)$ | ||
Revision as of 03:01, 22 June 2016
The Bateman polynomials $F_n$ are defined by the formula $$F_n(z) = {}_3F_2 \left( -n, n+1, \dfrac{z+1}{2}; 1,1;1 \right),$$ where ${}_3F_2$ denotes the generalized hypergeometric function.
Properties
References
- Harry Bateman: Some Properties of a certain Set of Polynomials (1933)... (previous)... (next) $3.$
- 1960: Earl David Rainville: Special Functions ... (previous) ... (next): $148. (1)$