Difference between revisions of "Jacobi theta 1"
From specialfunctionswiki
Line 18: | Line 18: | ||
=References= | =References= | ||
+ | * {{BookReference|Special Functions|1960|Earl David Rainville|prev=findme|next=Jacobi theta 2}}: $164. (1)$ | ||
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=findme|next=Jacobi theta 2}}: 16.27.1 | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=findme|next=Jacobi theta 2}}: 16.27.1 | ||
+ | |||
[[Category:SpecialFunction]] | [[Category:SpecialFunction]] |
Revision as of 17:54, 5 July 2016
Let $q \in \mathbb{C}$ with $|q|<1$. The Jacobi $\vartheta_1$ function is defined by $$\vartheta_1(z,q)=2q^{\frac{1}{4}} \displaystyle\sum_{k=0}^{\infty} (-1)^k q^{k(k+1)} \sin(2k+1)z,$$ where $\sin$ denotes the sine function.
Properties
Squares of theta relation for Jacobi theta 1 and Jacobi theta 4
Squares of theta relation for Jacobi theta 2 and Jacobi theta 4
Squares of theta relation for Jacobi theta 3 and Jacobi theta 4
Sum of fourth powers of Jacobi theta 2 and Jacobi theta 4 equals fourth power of Jacobi theta 3
Derivative of Jacobi theta 1 at 0
Logarithm of quotient of Jacobi theta 1 equals the log of a quotient of sines + a sum of sines
See also
Jacobi theta 2
Jacobi theta 3
Jacobi theta 4
References
- 1960: Earl David Rainville: Special Functions ... (previous) ... (next): $164. (1)$
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): 16.27.1