Difference between revisions of "Derivative of secant"
From specialfunctionswiki
Line 12: | Line 12: | ||
==References== | ==References== | ||
+ | *{{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Derivative of cosecant|next=Derivative of cotangent}}: $4.3.109$ | ||
[[Category:Theorem]] | [[Category:Theorem]] | ||
[[Category:Proven]] | [[Category:Proven]] |
Revision as of 02:49, 5 January 2017
Theorem
The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}z} \sec(z)=\tan(z)\sec(z),$$ where $\sec$ denotes the secant and $\cot$ denotes the cotangent.
Proof
From the definition of secant, $$\sec(z) = \dfrac{1}{\cos(z)},$$ and so using the quotient rule, the derivative of cosine, and the definition of tangent, $$\dfrac{\mathrm{d}}{\mathrm{d}z} \sec(z) = \dfrac{\mathrm{d}}{\mathrm{d}z} \dfrac{1}{\cos(z)} = \dfrac{\sin(z)}{\cos^2(z)}=\tan(z)\sec(z),$$ as was to be shown.
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): $4.3.109$