Difference between revisions of "Lerch transcendent"
From specialfunctionswiki
Line 1: | Line 1: | ||
− | The Lerch transcendent $\Phi$ is defined by | + | The Lerch transcendent $\Phi$ is defined for $|z|<1$ and $a \in \mathbb{C} \setminus \{ 0,-1,-2,\ldots\}$ by |
$$\Phi(z,s,a)=\displaystyle\sum_{k=0}^{\infty} \dfrac{z^k}{(a+k)^s}.$$ | $$\Phi(z,s,a)=\displaystyle\sum_{k=0}^{\infty} \dfrac{z^k}{(a+k)^s}.$$ | ||
Line 7: | Line 7: | ||
[[Dirichlet beta in terms of Lerch transcendent]]<br /> | [[Dirichlet beta in terms of Lerch transcendent]]<br /> | ||
[[Legendre chi in terms of Lerch transcendent]]<br /> | [[Legendre chi in terms of Lerch transcendent]]<br /> | ||
+ | |||
+ | =References= | ||
+ | * {{BookReference|Higher Transcendental Functions Volume I|1953|Harry Bateman|prev=findme|next=findme}}: $\S 1.11 (1)$ | ||
[[Category:SpecialFunction]] | [[Category:SpecialFunction]] |
Revision as of 02:46, 25 June 2017
The Lerch transcendent $\Phi$ is defined for $|z|<1$ and $a \in \mathbb{C} \setminus \{ 0,-1,-2,\ldots\}$ by $$\Phi(z,s,a)=\displaystyle\sum_{k=0}^{\infty} \dfrac{z^k}{(a+k)^s}.$$
Properties
Lerch transcendent polylogarithm
Relationship between Lerch transcendent and Lerch zeta
Dirichlet beta in terms of Lerch transcendent
Legendre chi in terms of Lerch transcendent
References
- 1953: Harry Bateman: Higher Transcendental Functions Volume I ... (previous) ... (next): $\S 1.11 (1)$