Difference between revisions of "Q-exponential E sub 1/q"

From specialfunctionswiki
Jump to: navigation, search
 
Line 10: Line 10:
  
 
=References=
 
=References=
 +
* {{BookReference|Quantum Calculus|2002|Victor Kac|author2=Pokman Cheung||prev=findme|next=findme}} $(9.10)$ (calls $E_{\frac{1}{q}}(x)$ $E_q^x$)
 
* {{BookReference|A Comprehensive Treatment of q-Calculus|2012|Thomas Ernst|prev=Q-difference equation for q-exponential E sub q|next=Q-difference equation for q-exponential E sub 1/q}}: ($6.153$)
 
* {{BookReference|A Comprehensive Treatment of q-Calculus|2012|Thomas Ernst|prev=Q-difference equation for q-exponential E sub q|next=Q-difference equation for q-exponential E sub 1/q}}: ($6.153$)
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Latest revision as of 04:30, 26 December 2016

The $E_{\frac{1}{q}}$ function is defined by the formula $$E_{\frac{1}{q}}(z) = \displaystyle\sum_{k=0}^{\infty} \dfrac{q^{\frac{k(k-1)}{2} }}{[k]_q!} z^k.$$

Properties

q-exponential E sub q in terms of binomial coefficient
Q-difference equation for q-exponential E sub 1/q

See Also

Q-exponential E sub q

References