Difference between revisions of "F(-n)=(-1)^(n+1)F(n)"
From specialfunctionswiki
(Created page with "==Theorem== The following formula holds: $$F(-n)=(-1)^{n+1}F(n),$$ where $F(n)$ denotes the $n$th Fibonacci number. ==Proof== ==References== * {{PaperR...") |
|||
Line 7: | Line 7: | ||
==References== | ==References== | ||
+ | * {{PaperReference|On a General Fibonacci Identity|1965|John H. Halton|prev=Binet's formula|next=findme}} | ||
* {{PaperReference|A Primer on the Fibonacci Sequence Part I|1963|S.L. Basin|author2=V.E. Hoggatt, Jr.|prev=L(n)^2-5F(n)^2=4(-1)^n|next=L(-n)=(-1)^nL(n)}} | * {{PaperReference|A Primer on the Fibonacci Sequence Part I|1963|S.L. Basin|author2=V.E. Hoggatt, Jr.|prev=L(n)^2-5F(n)^2=4(-1)^n|next=L(-n)=(-1)^nL(n)}} | ||
[[Category:Theorem]] | [[Category:Theorem]] | ||
[[Category:Unproven]] | [[Category:Unproven]] |
Latest revision as of 22:33, 25 May 2017
Theorem
The following formula holds: $$F(-n)=(-1)^{n+1}F(n),$$ where $F(n)$ denotes the $n$th Fibonacci number.