Difference between revisions of "F(-n)=(-1)^(n+1)F(n)"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds: $$F(-n)=(-1)^{n+1}F(n),$$ where $F(n)$ denotes the $n$th Fibonacci number. ==Proof== ==References== * {{PaperR...")
 
 
Line 7: Line 7:
  
 
==References==
 
==References==
 +
* {{PaperReference|On a General Fibonacci Identity|1965|John H. Halton|prev=Binet's formula|next=findme}}
 
* {{PaperReference|A Primer on the Fibonacci Sequence Part I|1963|S.L. Basin|author2=V.E. Hoggatt, Jr.|prev=L(n)^2-5F(n)^2=4(-1)^n|next=L(-n)=(-1)^nL(n)}}
 
* {{PaperReference|A Primer on the Fibonacci Sequence Part I|1963|S.L. Basin|author2=V.E. Hoggatt, Jr.|prev=L(n)^2-5F(n)^2=4(-1)^n|next=L(-n)=(-1)^nL(n)}}
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 22:33, 25 May 2017

Theorem

The following formula holds: $$F(-n)=(-1)^{n+1}F(n),$$ where $F(n)$ denotes the $n$th Fibonacci number.

Proof

References