Difference between revisions of "Log 10(z)=log(z)/log(10)"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds: $$\log_{10}(z)=\dfrac{\log(z)}{\log(10)},$$ where $\log_{10}$ denote logarithm base a and $\log$ denotes logarithm. ==Proof==...")
 
 
Line 7: Line 7:
  
 
==References==
 
==References==
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Log e(z)=log(z)|next=findme}}: $4.1.22$
+
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Log e(z)=log(z)|next=log 10(z)=log 10(e)log(z)}}: $4.1.22$
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 19:27, 25 June 2017

Theorem

The following formula holds: $$\log_{10}(z)=\dfrac{\log(z)}{\log(10)},$$ where $\log_{10}$ denote logarithm base a and $\log$ denotes logarithm.

Proof

References