Difference between revisions of "Sum of cosh and sinh"
From specialfunctionswiki
(Created page with "==Theorem== The following formula holds: $$\cosh(z) + \sinh(z) = e^z,$$ where $\cosh$ denotes hyperbolic cosine, $\mathrm{sinh}$ denotes hyperbolic sine, and...") |
|||
Line 7: | Line 7: | ||
==References== | ==References== | ||
− | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Pythagorean identity for coth and csch|next= | + | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Pythagorean identity for coth and csch|next=Difference of cosh and sinh}}: $4.5.19$ |
[[Category:Theorem]] | [[Category:Theorem]] | ||
[[Category:Unproven]] | [[Category:Unproven]] |
Latest revision as of 22:30, 21 October 2017
Theorem
The following formula holds: $$\cosh(z) + \sinh(z) = e^z,$$ where $\cosh$ denotes hyperbolic cosine, $\mathrm{sinh}$ denotes hyperbolic sine, and $e^z$ denotes the exponential.
Proof
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): $4.5.19$