Difference between revisions of "Coth of a sum"
From specialfunctionswiki
(Created page with "==Theorem== The following formula holds: $$\coth(z_1+z_2)=\dfrac{\coth(z_1)\coth(z_2)+1}{\cosh(z_1)+\coth(z_2)},$$ where $\coth$ denotes hyperbolic cotangent. ==Proo...") |
|||
Line 7: | Line 7: | ||
==References== | ==References== | ||
− | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Cosh of a sum|next= | + | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Cosh of a sum|next=Halving identity for sinh}}: $4.5.27$ |
[[Category:Theorem]] | [[Category:Theorem]] | ||
[[Category:Unproven]] | [[Category:Unproven]] |
Revision as of 22:42, 21 October 2017
Theorem
The following formula holds: $$\coth(z_1+z_2)=\dfrac{\coth(z_1)\coth(z_2)+1}{\cosh(z_1)+\coth(z_2)},$$ where $\coth$ denotes hyperbolic cotangent.
Proof
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): $4.5.27$