Difference between revisions of "Cosine"
(→Properties) |
|||
Line 11: | Line 11: | ||
=Properties= | =Properties= | ||
+ | {{:Derivative of cosine}} | ||
+ | |||
<div class="toccolours mw-collapsible mw-collapsed"> | <div class="toccolours mw-collapsible mw-collapsed"> | ||
<strong>Proposition:</strong> $\cos(x) = \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k x^{2k}}{(2k)!}$ | <strong>Proposition:</strong> $\cos(x) = \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k x^{2k}}{(2k)!}$ |
Revision as of 04:47, 20 March 2015
The cosine function, $\cos \colon \mathbb{C} \rightarrow \mathbb{C}$ is defined by the formula $$\cos(z)=\dfrac{e^{iz}-e^{-iz}}{2},$$ where $e^z$ is the exponential function.
- Cosine.png
Graph of $\cos$ on $\mathbb{R}$.
- Complex cos.jpg
Domain coloring of analytic continuation of $\cos$ to $\mathbb{C}$.
Contents
Properties
Theorem
The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}z} \cos(z) = -\sin(z),$$ where $\cos$ denotes the cosine and $\sin$ denotes the sine.
Proof
From the definition of cosine, $$\cos(z) = \dfrac{e^{iz}+e^{-iz}}{2},$$ and so using the derivative of the exponential function, the linear property of the derivative, the chain rule, the reciprocal of i, and the definition of the sine function, $$\begin{array}{ll} \dfrac{\mathrm{d}}{\mathrm{d}z} \cos(z) &= \dfrac{1}{2} \left[ \dfrac{\mathrm{d}}{\mathrm{d}z} [e^{iz}] + \dfrac{\mathrm{d}}{\mathrm{d}z}[e^{-iz}] \right] \\ &= \dfrac{1}{2} \left[ ie^{iz} - ie^{-iz} \right] \\ &= -\dfrac{e^{iz}-e^{-iz}}{2i} \\ &= -\sin(z), \end{array}$$ as was to be shown. █
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): $4.3.106$
Proposition: $\cos(x) = \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k x^{2k}}{(2k)!}$
Proof: █
Proposition: $\cos(x) = \displaystyle\prod_{k=1}^{\infty} \left( 1 - \dfrac{4x^2}{\pi^2 (2k-1)^2} \right)$
Proof: █