Difference between revisions of "Tangent"
Line 8: | Line 8: | ||
</gallery> | </gallery> | ||
</div> | </div> | ||
+ | |||
+ | =Properties= | ||
+ | {{:Derivative of tangent}} | ||
<center>{{:Trigonometric functions footer}}</center> | <center>{{:Trigonometric functions footer}}</center> |
Revision as of 05:09, 20 March 2015
The tangent function is defined as the ratio of the sine and cosine functions: $$\tan(z) = \dfrac{\sin(z)}{\cos(z)}.$$
- Tangent.png
Graph of $\tan$ on $\mathbb{R}$.
- Complex tan.jpg
Domain coloring of analytic continuation of $\tan$.
Contents
Properties
Theorem
The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}z} \tan(z) = \sec^2(z),$$ where $\tan$ denotes the tangent function and $\sec$ denotes the secant function.
Proof
From the definition, $$\tan(z) = \dfrac{\sin(z)}{\cos(z)},$$ so using the quotient rule, the derivative of sine, the derivative of cosine, the Pythagorean identity for sin and cos, and the definition of secant, $$\dfrac{\mathrm{d}}{\mathrm{d}z} \tan(z) = \dfrac{\mathrm{d}}{\mathrm{d}z} \dfrac{\sin(z)}{\cos(z)} = \dfrac{\cos^2(z) + \sin^2(z)}{\cos^2(z)} = \dfrac{1}{\cos^2(z)} = \sec^2(z),$$ as was to be shown. $\blacksquare$
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): $4.3.107$