Difference between revisions of "Dedekind eta"

From specialfunctionswiki
Jump to: navigation, search
m (Tom moved page Dedekind eta function to Dedekind eta)
Line 7: Line 7:
 
File:DedekindetaIm.png|Imaginary part of $\eta$.
 
File:DedekindetaIm.png|Imaginary part of $\eta$.
 
</gallery>
 
</gallery>
 +
</div>
 +
 +
=Properties=
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> The following formula holds for $\tau$ with $\mathrm{Im} \hspace{2pt} \tau > 0$:
 +
$$\eta \left( -\dfrac{1}{\tau} \right) = (-i\tau)^{\frac{1}{2}}\eta(\tau).$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 
</div>
 
</div>
  
 
=References=
 
=References=
 
[http://eta.math.georgetown.edu/ A collection of over 6200 identities for the Dedekind Eta Function]
 
[http://eta.math.georgetown.edu/ A collection of over 6200 identities for the Dedekind Eta Function]

Revision as of 03:55, 7 June 2015

Let $q=e^{2\pi i \tau}$. We define the Dedekind eta function by the formula $$\eta(\tau) = e^{\frac{\pi i \tau}{12}} \displaystyle\prod_{n=1}^{\infty} (1-q^n).$$

Properties

Theorem: The following formula holds for $\tau$ with $\mathrm{Im} \hspace{2pt} \tau > 0$: $$\eta \left( -\dfrac{1}{\tau} \right) = (-i\tau)^{\frac{1}{2}}\eta(\tau).$$

Proof:

References

A collection of over 6200 identities for the Dedekind Eta Function