Difference between revisions of "Struve function"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
$$H_{\nu}(z)=\left(\dfrac{z}{2}\right)^{\nu+1} \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k\left(\frac{z}{2}\right)^{2k}}{\Gamma(k+\frac{3}{2})\Gamma(k+\nu+\frac{3}{2})}$$
+
The Struve functions are defined by
 +
$$\mathbf{H}_{\nu}(z)=\left(\dfrac{z}{2}\right)^{\nu+1} \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k\left(\frac{z}{2}\right)^{2k}}{\Gamma(k+\frac{3}{2})\Gamma(k+\nu+\frac{3}{2})}$$
  
 
=Properties=
 
=Properties=
Line 10: Line 11:
 
</div>
 
</div>
  
{{:Relationship between Weber function and Struve function}}
+
{{:Relationship between Weber function 0 and Struve function 0}}
 +
{{:Relationship between Weber function 1 and Struve function 1}}
  
 
=References=
 
=References=
 
[http://dualaud.net/specialfunctionswiki/abramowitz_and_stegun-1.03/page_496.htm Struve functions in Abramowitz&Stegun]
 
[http://dualaud.net/specialfunctionswiki/abramowitz_and_stegun-1.03/page_496.htm Struve functions in Abramowitz&Stegun]

Revision as of 18:19, 28 June 2015

The Struve functions are defined by $$\mathbf{H}_{\nu}(z)=\left(\dfrac{z}{2}\right)^{\nu+1} \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k\left(\frac{z}{2}\right)^{2k}}{\Gamma(k+\frac{3}{2})\Gamma(k+\nu+\frac{3}{2})}$$

Properties

Theorem: The Struve function $H_n$ solves the following nonohomogeneous Bessel differential equation $$x^2y(x)+xy'(x)+(x^2-n^2)y(x)=\dfrac{4(\frac{x}{2})^{n+1}}{\sqrt{\pi}\Gamma(n+\frac{1}{2})}.$$

Proof:

Theorem

The following theorem holds: $$\mathbf{E}_0(z)=-\mathbf{H}_0(z),$$ where $\mathbf{E}_0$ denotes a Weber function and $\mathbf{H}_0$ denotes a Struve function.

Proof

References

Theorem

The following formula holds: $$\mathbf{E}_1(z)=\dfrac{2}{\pi}-\mathbf{H}_1(z),$$ where $\mathbf{E}_1$ denotes a Weber function and $\mathbf{H}_1$ denotes a Struve function.

Proof

References

References

Struve functions in Abramowitz&Stegun