Difference between revisions of "Relationship between Struve function and hypergeometric pFq"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> <strong>Theorem:</strong> The followin...")
 
Line 1: Line 1:
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<strong>[[Relationship between Struve function and hypergeometric pFq|Theorem]]:</strong> The following formula holds:
 
<strong>[[Relationship between Struve function and hypergeometric pFq|Theorem]]:</strong> The following formula holds:
$$H_{\nu}(z)=\dfrac{2(\frac{z}{2})^{\nu+1}}{\sqrt{\pi}\Gamma(\nu+\frac{3}{2})} {}_1F_2 \left( 1; \dfrac{3}{2}+\nu,\dfrac{3}{2};-\dfrac{z^2}{4} \right),$$
+
$$\mathbf{H}_{\nu}(z)=\dfrac{2(\frac{z}{2})^{\nu+1}}{\sqrt{\pi}\Gamma(\nu+\frac{3}{2})} {}_1F_2 \left( 1; \dfrac{3}{2}+\nu,\dfrac{3}{2};-\dfrac{z^2}{4} \right),$$
 
where $\mathbf{H}_{\nu}$ denotes a [[Struve function]], $\pi$ denotes [[pi]], $\Gamma$ denotes the [[gamma function]], and ${}_2F_1$ denotes the [[hypergeometric pFq]].
 
where $\mathbf{H}_{\nu}$ denotes a [[Struve function]], $\pi$ denotes [[pi]], $\Gamma$ denotes the [[gamma function]], and ${}_2F_1$ denotes the [[hypergeometric pFq]].
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">

Revision as of 18:40, 28 June 2015

Theorem: The following formula holds: $$\mathbf{H}_{\nu}(z)=\dfrac{2(\frac{z}{2})^{\nu+1}}{\sqrt{\pi}\Gamma(\nu+\frac{3}{2})} {}_1F_2 \left( 1; \dfrac{3}{2}+\nu,\dfrac{3}{2};-\dfrac{z^2}{4} \right),$$ where $\mathbf{H}_{\nu}$ denotes a Struve function, $\pi$ denotes pi, $\Gamma$ denotes the gamma function, and ${}_2F_1$ denotes the hypergeometric pFq.

Proof: