Difference between revisions of "Riemann-Siegel Z"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The Riemann-Siegel $Z$ function is defined by $$Z(t)=e^{i\theta(t)}\zeta \left( \dfrac{1}{2}+it \right),$$ where $\theta$ denotes the Riemann-Siegel theta function and $\z...")
 
Line 2: Line 2:
 
$$Z(t)=e^{i\theta(t)}\zeta \left( \dfrac{1}{2}+it \right),$$
 
$$Z(t)=e^{i\theta(t)}\zeta \left( \dfrac{1}{2}+it \right),$$
 
where $\theta$ denotes the [[Riemann-Siegel theta function]] and $\zeta$ denotes the [[Riemann zeta function]].
 
where $\theta$ denotes the [[Riemann-Siegel theta function]] and $\zeta$ denotes the [[Riemann zeta function]].
 +
 +
<div align="center">
 +
<gallery>
 +
File:Plot riemann siegel z.png|Graph of $Z(t)$ on $[-20,20]$.
 +
File:Domain coloring riemann siegel z.png|[[Domain coloring]] of [[analytic continuation]] of $Z(t)$.
 +
</gallery>
 +
</div>

Revision as of 19:19, 25 July 2015

The Riemann-Siegel $Z$ function is defined by $$Z(t)=e^{i\theta(t)}\zeta \left( \dfrac{1}{2}+it \right),$$ where $\theta$ denotes the Riemann-Siegel theta function and $\zeta$ denotes the Riemann zeta function.