Difference between revisions of "Kelvin kei"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The $\mathrm{bei}_{\nu}$ function is defined as $$\mathrm{ber}(z)=\mathrm{Im} \hspace{2pt} K_{\nu} \left( x e^{\frac{\pi i}{4}} \right),$$ where $\mathrm{Im}$ denotes the im...")
 
Line 2: Line 2:
 
$$\mathrm{ber}(z)=\mathrm{Im} \hspace{2pt} K_{\nu} \left( x e^{\frac{\pi i}{4}} \right),$$
 
$$\mathrm{ber}(z)=\mathrm{Im} \hspace{2pt} K_{\nu} \left( x e^{\frac{\pi i}{4}} \right),$$
 
where $\mathrm{Im}$ denotes the [[imaginary part]] of a [[complex number]] and $K_{\nu}$ denotes the [[Modified Bessel K sub nu|modified Bessel $K_{\nu}$]].
 
where $\mathrm{Im}$ denotes the [[imaginary part]] of a [[complex number]] and $K_{\nu}$ denotes the [[Modified Bessel K sub nu|modified Bessel $K_{\nu}$]].
 +
 +
<div align="center">
 +
<gallery>
 +
File:Domcolkelvinkeisub0.png|[[Domain coloring]] of $\mathrm{kei}_0$.
 +
</gallery>
 +
</div>

Revision as of 03:19, 21 August 2015

The $\mathrm{bei}_{\nu}$ function is defined as $$\mathrm{ber}(z)=\mathrm{Im} \hspace{2pt} K_{\nu} \left( x e^{\frac{\pi i}{4}} \right),$$ where $\mathrm{Im}$ denotes the imaginary part of a complex number and $K_{\nu}$ denotes the modified Bessel $K_{\nu}$.