Difference between revisions of "Kelvin ber"

From specialfunctionswiki
Jump to: navigation, search
Line 8: Line 8:
 
</gallery>
 
</gallery>
 
</div>
 
</div>
 +
 +
=References=
 +
[http://mathworld.wolfram.com/Ber.html] <br />
 +
 +
<center>{{:Kelvin functions footer}}</center>

Revision as of 03:29, 21 August 2015

The $\mathrm{ber}_{\nu}$ function is defined as $$\mathrm{ber}_{\nu}(z)=\mathrm{Re} \hspace{2pt} J_{\nu} \left( z e^{\frac{3\pi i}{4}} \right),$$ where $\mathrm{Re}$ denotes the real part of a complex number and $J_{\nu}$ denotes the Bessel function of the first kind.

References

[1]

<center>Kelvin functions
</center>