Difference between revisions of "Kelvin ber"
From specialfunctionswiki
Line 8: | Line 8: | ||
</gallery> | </gallery> | ||
</div> | </div> | ||
+ | |||
+ | =References= | ||
+ | [http://mathworld.wolfram.com/Ber.html] <br /> | ||
+ | |||
+ | <center>{{:Kelvin functions footer}}</center> |
Revision as of 03:29, 21 August 2015
The $\mathrm{ber}_{\nu}$ function is defined as $$\mathrm{ber}_{\nu}(z)=\mathrm{Re} \hspace{2pt} J_{\nu} \left( z e^{\frac{3\pi i}{4}} \right),$$ where $\mathrm{Re}$ denotes the real part of a complex number and $J_{\nu}$ denotes the Bessel function of the first kind.
Domain coloring of $\mathrm{ber}_0$.