Difference between revisions of "Q-exponential E sub 1/q"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The $E_{\frac{1}{q}}$ function is defined by the formula $$E_{\frac{1}{q}}(z) = \displaystyle\sum_{k=0}^{\infty} \dfrac{q^{ {k \choose 2} }}{[k]_q!} z^k.$$ =Properties= <div...")
(No difference)

Revision as of 21:43, 5 September 2015

The $E_{\frac{1}{q}}$ function is defined by the formula $$E_{\frac{1}{q}}(z) = \displaystyle\sum_{k=0}^{\infty} \dfrac{q^{ {k \choose 2} }}{[k]_q!} z^k.$$

Properties

Theorem: The following formula holds: $$D_q E_{\frac{1}{q}}(az)=aE_{\frac{1}{q}}(qaz),$$ where $D_q$ denotes the q-difference operator and $E_{\frac{1}{q}}$ denotes the $q$-exponential $E_{\frac{1}{q}}$.

Proof: