Difference between revisions of "Takagi function"
From specialfunctionswiki
Line 22: | Line 22: | ||
</div> | </div> | ||
</div> | </div> | ||
+ | |||
+ | =See Also= | ||
+ | [[van der Waerden function]] | ||
=References= | =References= | ||
[https://pure.ltu.se/ws/files/30923977/LTU-EX-03320-SE.pdf] | [https://pure.ltu.se/ws/files/30923977/LTU-EX-03320-SE.pdf] |
Revision as of 23:07, 31 December 2015
Define the function $s(x)=\min_{n \in \mathbb{Z}} |x-n|$. The blancmange function (also called the Takagi function) is defined by $$\mathrm{blanc}(x)=\displaystyle\sum_{k=0}^{\infty} \dfrac{s(2^n x)}{2^n}.$$
- Blancmangefunction.png
Graph of $\mathrm{blanc}$ on $[0,1]$.
Properties
Theorem: The blancmange function is continuous on $\mathbb{R}$.
Proof: █
Theorem: The Blancmange function is nowhere differentiable on $\mathbb{R}$.
Proof: █