Difference between revisions of "Takagi function"

From specialfunctionswiki
Jump to: navigation, search
Line 22: Line 22:
 
</div>
 
</div>
 
</div>
 
</div>
 +
 +
=See Also=
 +
[[van der Waerden function]]
  
 
=References=
 
=References=
 
[https://pure.ltu.se/ws/files/30923977/LTU-EX-03320-SE.pdf]
 
[https://pure.ltu.se/ws/files/30923977/LTU-EX-03320-SE.pdf]

Revision as of 23:07, 31 December 2015

Define the function $s(x)=\min_{n \in \mathbb{Z}} |x-n|$. The blancmange function (also called the Takagi function) is defined by $$\mathrm{blanc}(x)=\displaystyle\sum_{k=0}^{\infty} \dfrac{s(2^n x)}{2^n}.$$

Properties

Theorem: The blancmange function is continuous on $\mathbb{R}$.

Proof:

Theorem: The Blancmange function is nowhere differentiable on $\mathbb{R}$.

Proof:

See Also

van der Waerden function

References

[1]