Difference between revisions of "Van der Waerden function"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
The van der Waerden function is defined by the formula
+
Define $s(x)=\inf_{n \in \mathbb{Z}} |x-n|$ (i.e. the distance from $x$ to the set of integers $\mathbb{Z}$). The van der Waerden function is defined by the formula
$$V(x)=\displaystyle\sum_{k=0}^{\infty} \dfrac{1}{10^k} \underset{m\in\mathbb{Z}}{\inf} |10^k x-m|.$$
+
$$V(x)=\displaystyle\sum_{k=0}^{\infty} \dfrac{s \left(10^k x \right)}{10^k}.$$
 
+
Note: to calculate $s(x)$ you may use $s(x)=\min \left(2^n x - \lfloor 2^n x \rfloor, \lceil 2^n x \rceil - x \right)$, where $\lfloor \cdot \rfloor$ denotes the [[floor]] function and $\lceil \cdot \rceil$ denotes the [[ceiling]] function.
 
=Properties=
 
=Properties=
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<div class="toccolours mw-collapsible mw-collapsed">

Revision as of 17:31, 22 January 2016

Define $s(x)=\inf_{n \in \mathbb{Z}} |x-n|$ (i.e. the distance from $x$ to the set of integers $\mathbb{Z}$). The van der Waerden function is defined by the formula $$V(x)=\displaystyle\sum_{k=0}^{\infty} \dfrac{s \left(10^k x \right)}{10^k}.$$ Note: to calculate $s(x)$ you may use $s(x)=\min \left(2^n x - \lfloor 2^n x \rfloor, \lceil 2^n x \rceil - x \right)$, where $\lfloor \cdot \rfloor$ denotes the floor function and $\lceil \cdot \rceil$ denotes the ceiling function.

Properties

Theorem: The van der Waerden function is continuous.

Proof:

Theorem: The van der Waerden function is nowhere differentiable on $\mathbb{R}$.

Proof:

See Also

Takagi function

References

[1]